مقایسۀ مدل رگرسیون درختی، شبکۀ عصبی مصنوعی و هارگریوز سامانی در برآورد تبخیرتعرق مرجع مناطق خشک
نویسندگان
چکیده مقاله:
هدف از این تحقیق، ارزیابی سه مدل شبکۀ عصبی مصنوعی، رگرسیون درختی و مدل هارگریوز سامانی برای برآورد تبخیرتعرق گیاه مرجع بود. بدین منظور از اطلاعات هواشناسی استانهای سیستان و بلوچستان، کرمان، یزد و خراسان جنوبی در دورۀ آماری 1998-2008 استفاده شد. با توجه به تأثیر سرعت باد بر میزان تبخیرتعرق منطقه، برآورد تبخیرتعرق براساس تغییرات سرعت باد در قالب سه گروه شامل ایستگاههایی با سرعت باد کمتر از 48/2 متر بر ثانیه در گروه U1، ایستگاههایی با سرعت باد بین 48/2 و 67/3 متر بر ثانیه در گروه U2 و ایستگاههایی با سرعت باد بیشتر از 67/3 متر بر ثانیه در گروهU3 صورت گرفت. نتایج نشان داد هر سه مدل شبکۀ عصبی مصنوعی، رگرسیون درختی و هارگریوز سامانی در گروه U1بهترین برآورد را داشتند. نتایج آماری میانگین مجذور مربعات خطای مدل شبکۀ عصبی مصنوعی 41/1 میلیمتر در روز با ضریب تبیین 84/0، مدل رگرسیون درختی 46/1 میلیمتر در روز با ضریب تبیین 83/0 و هارگریوز سامانی کالیبرهشده 02/2 میلیمتر در روز با ضریب تبیین 69/0 بهدست آمد که بیانگر برتری دو روش شبکۀ عصبی و رگرسیون درختی بود.
منابع مشابه
کاربرد حالتهای هارگریوز- سامانی و جنسن- هیز در ارزیابی تبخیر تعرق گیاه مرجع یونجه در اصفهان
برآورد دقیق تبخیر– تعرق یکی از فاکتورهای اساسی در طراحی سیستمهای آبیاری و ساختمانهای ذخیره و انتقال آب است. روشهای متعددی برای محاسبه تبخیر– تعرق گیاه مرجع ارایه شده است. بسیاری از روشها به دادههای متعدد هواشناسی نیازمند میباشد اما برخی از این دادهها در دسترس نیستند و به فرض دسترسی، از دقت کافی برخوردار نیستند. بنابر این روشهای مبتنی بر حداقل دادههای اقلیمی گسترش یافتند که روشهای هارگ...
متن کاملمقایسۀ مدل شبکۀ عصبی مصنوعی با فرایند تحلیل سلسلهمراتبی در ارزیابی خطر زمینلغزش
زمینلغزش یکی از مخاطرات طبیعی در مناطق کوهستانی بهشمار میرود که هرساله به خسارات زیادی منجر میشود. حوضۀ دوآب الشتر با داشتن چهرهای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوۀ زمینلغزش است. هدف این تحقیق مقایسۀ مدل شبکۀ عصبی مصنوعی با فرایند تحلیل سلسلهمراتبی، بهمنظور ارزیابی خطر زمینلغزش در حوضۀ دوآب الشتر است. بدین منظور ابتدا پارامترهای مؤثر در وقوع زمینلغزش استخراج و ...
متن کاملبهبود دقت روش هارگریوز در برآورد تبخیر- تعرق مرجع به کمک ضریب اصلاحی با مدل شبکه عصبی مصنوعی و درخت تصمیم M5
تبخیر- تعرق یکی از مهم ترین اجزای چرخه هیدرولوژی است که مدلسازی آن در مدیریت منابع آب نقش مهمی دارد. در تحقیق حاضر امکان بهبود دقت برآورد تبخیر- تعرق روش هارگریوز به کمک ضریب اصلاحیK با استفاده از مدل شبکه عصبی مصنوعی و مدل درخت تصمیم M5 مورد بررسی قرار گرفت. این ضریب برابر با نسبت تبخیر- تعرق مدل پنمن مونتیث فائو به روش هارگریوز می باشد. داده های مورد استفاده این تحقیق عبارت از دمای حداکثر و ح...
متن کاملارائه ضریب اصلاحی برای روش هارگریوز-سامانی به منظور برآورد تبخیر- تعرق گیاه مرجع (مطالعه موردی: ایستگاه سینوپتیک گرگان)
متن کامل
مقایسۀ عملکرد مدل درختی M5 با مدلهای شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در استخراج منحنی تداوم جریان مطالعۀ موردی: ایستگاه خزانگاه رودخانۀ ارس
یکیاز مهمترینو پرکاربردترینعلائمپاسخهیدرولوژیکحوزه، منحنیتداومجریان استو درکاربردهایهیدرولوژیکیبیشماری برای آنالیز فراوانیجریانهایکمینهو سیلابمورد استفادهقرار میگیرد. برای نمایش محدودۀ کامل دبی رودخانه، از جریانهای حداقل تا حداکثر سیلاب و منحنی تداوم جریان (FDC)استفاده میشود؛ بنابراین استخراج دقیق این منحنیها با حداقل خطا حائز اهمیت فراوانی است. در این مطالعه کارایی مدل درختی M5 در است...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 149- 160
تاریخ انتشار 2014-09-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023